识图推理生图一站解决 贾佳亚团队新作开源 融合ChatGPT DALLE3 (推理图示)

识图推理生图一站解决 贾佳亚团队新作开源 融合ChatGPT DALLE3 (推理图示)

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

梦晨 来源: 量子位

接近商业闭源模型水平

在开源社区中把GPT-4+Dall·E 3能⼒整合起来的模型该有多强?

香港中文大学终身教授贾佳亚团队提出多模态模型 Mini-Gemini

Mini-Gemini还提供了2B小杯到34B的超大杯,最强模型在多个指标上相比谷歌的Gemini Pro甚至GPT-4V都不遑多让。

目前,Mini-Gemini 从代码、模型到数据已全部开源 ,登上了PaperWithCode热榜。

Mini-Gemini 线上Demo也已发布 ,超会玩梗,一起来体验下!

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

接近商业闭源模型水平

Mini-Gemini Demo放出后受到广大网友关注,一番“品尝”后, 他们认为Mini-Gemini跟商业模型差不了多少。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

目前,绝大多数多模态模型仅支持低分辨率图像输入和文字输出,而在实际场景中,许多任务都需要 对高清图像进行解析,并用图像的形式进行展现

如下图所示,Mini-Gemini不仅能够根据图片对做面包的过程进行手把手教学,也能够准确将不同电脑品种根据图片中的各种参数进行对比。

有网友开玩笑说,这下妈妈不用担心我独自生活了。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

更重要的是,Mini-Gemini在保留超强的图像理解和推理能力的同时,还 解锁了图像的生成能力 ,就如同ChatGPT和生成模型的结合。

下面,让我们通过几个例子来更直观地感受这种能力:

还记得Google Gemini的官方演示视频么?当用户给出两个毛线团并问出能用它们做什么时,Gemini可以识别出图片内容并给出相应的建议。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

当我们把相似的输入给到Mini-Gemini,它会怎么回答呢?

可以发现,Mini-Gemini也可以识别出图片中的元素,并且合理地建议,同时生成了一只对应的毛线小熊。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

通过一些抽象的多模态指令来让模型给出推理,并生成合适的图片,这个操作就很像是ChatGPT和DALL·E 3的联动了。

接下来让Mini-Gemini做自己最擅长的 推理和图片理解 ,看看它表现:

比如理解图片中的矛盾点并举一反三——输入冰川中的仙人掌,它会解释其中的矛盾并生成一张热带雨林中北极熊的图片:

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

同时,正如ChatGPT+DALL·E 3的梦幻结合一样,Mini-Gemini的“推理生成”功能还可以 在多轮对话中通过简单指令生成连环小故事

比方说,让它根据用户输入讲一个贵族小老鼠的故事,Mini-Gemini会根据前文的文字生成结果和用户输入进行推理,在保持一致性的情况下对图片进行修改,使其更符合用户的要求。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

当然,Mini-Gemini对于多模态模型的传统技能 图表理解 也不在话下。比方让模型理解输入曲线图的数学意义(高斯分布),并让它使用代码复现这张图,通过运行生成的代码,模型可以高质量地还原曲线图,节省了复现的时间。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

又或者让Mini-Gemini 理解梗图 ,通过其强大的OCR和推理能力,也可以准确指出笑点。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

在另一个案例中,Mini-Gemini除了理解梗图本身,甚至推测了制作者的深层意图。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

高清复杂的多图表理解和归纳也是小菜一碟,Mini-Gemini直接秒变打工人效率提升的超级外挂。

融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决 融合ChatGPT+DALLE3,贾佳亚团队新作开源:识图推理生图一站解决

技术细节:

那么问题来了,Mini-Gemini是怎样做到这种惊艳的效果呢?

核心在于三点:

(1) 用于高清图像的双编码器机制

(2) 更高质量的数据

(3) 训练阶段结合生成模型数据拓展

大道至简,Mini-Gemini的整体思路并不复杂。其中的Gemini(双子座)表达的是使用视觉双分支的信息挖掘(ng-Info in)解决高清图像理解问题。

详细来说,Mini-Gemini将传统所使用的ViT当做低分辨率的Query,而使用卷积网络(ConvNet)将高分辨率的图像编码成Key和Value。

使用Transformer中常用的Attention机制,来挖掘每个低分辨率Query所对应的高分辨率区域。从而 在保持最终视觉Token数目不变的情况下去提升对高清图像的响应 ,保证了在大语言模型(LLM)中对于高清图像的高效编码。

值得一提的是,由于高分辨率分支卷积网络的使用, 可以根据需要对图像所需的分辨率自适应调整 。对于图像的生成部分,Mini-Gemini借助了SDXL,使用LLM推理后所生成的文本链接两个模型,类似于DALL·E 3的流程。

对于数据,Mini-Gemini进一步收集并优化了训练数据的质量,并加入了跟生成模型结合的文本数据进行训练。在 仅使用2-3M数据的情况下,实现了对图像理解、推理和生成的统一流程

Mini-Gemini在各种Zero-shot的榜单上毫不逊色于各种大厂用大量数据训练出来的模型。

量化指标:

可以看出,Mini-Gemini提供了多种普通和高清版本的模型,并且覆盖了2B的小杯到34B的超大杯,各个版本都取得了相似参数量下领先的效果,在许多指标上甚至超越Gemini Pro和GPT-4V。

在线可玩:

值得一提的是,Mini-Gemini的图像理解和生成能力已经出了Demo,可以在线跟自定义图像对话的那种。

操作也极其简单,直接跟输入图像或文字进行对话即可,欢迎来撩!

Github地址:地址:论文地址:模型地址:数据地址:

版权所有,未经授权不得以任何形式转载及使用,违者必究。
声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。