AI编程登上Science封面:AlphaCode打竞赛,三分之二赛题一遍过,成绩超过一半程序员
萧箫 来源: 量子位DeepMind:提供0基础编程新机会
DeepMind的NS论文又新添一篇。
这回,是“信息学竞赛选手”,登上了最新一期Science封面。
对,就是那个悄悄潜入10场编程比赛敲代码, 成绩超过了一半人类 的编程AI。
并且就在这篇最新更新的论文中,DeepMind还首次透露了AlphaCode的“一次通过率”:。
也就是说,AlphaCode近三分之二的提交,都是一次AC(Accepted)的。
CMU博世人工智能中心教授J. Zico Kolter的最新评论文章也同时发表在了这一期Science上,他认为:
而在DeepMind的官方推特下,还有不少人把AlphaCode同当红炸子鸡ChatGPT联系了起来。
有人已经迫不及待看到两者同台演出:
首次通过率66%
尽管AI编程领域,GitHub的Copilot已经快进到收费模式,甚至还和程序员们“法庭上见”了。
但在DeepMind看来,AlphaCode还是颇有些不同之处。
一方面,编程竞赛对于AI而言本身就是比纯编程更为复杂的任务,关键是要为无法预见的问题构建解决方案。
另一方面,在架构上,AlphaCode采用了不同的机制来编码赛题文本。
值得一提的是,AlphaCode“打”的这10场编程比赛都来自 Codeforces 。
相比其他针对算法和数据结构的编程比赛,Codeforces更偏好考查 思维能力 ,这意味着AI无法仅仅通过“背题”来完成挑战。
例如这是Codeforces上关于1553D问题的描述:
也就是说,假设字符串s是”abcbd”,你分别在第一个位置和第四个位置按下Backspace,那么将得到字符串”bd”。
因为在第一个光标位置前没有字符,所以第一次没有动作。第四个光标位置前的字符是c,上一个未删除字符是a,所以按下Backspace将删除前三个字符”bd”。
针对这个“前提”,我们需要解决的问题如下:
针对这个问题,AlphaCode给出的解法如下:
那么,我们只需要给定输入的字符串数量(4)和具体的字符串内容,就能让程序输出对应的结果:
第一组ababa(ba),第二组ababa(bb),第三组aaa(aaaa),第四组aababa(ababa)。
对此程序输出的结果分别是YES、NO、NO和YES。
在做题过程中,AlphaCode的“解题思路”也不再是黑箱。
它不仅成功解决了问题,还能将代码和注意力高亮的对应位置显示出来:
上述还只是AlphaCode解的其中一道题。
整体来说,在Codeforces平台举办的编程比赛模拟评估中,AlphaCode在超过5000名参与者的比赛中平均排名前54.3%——击败了一半的选手。
并且 第一次提交就通过 的概率达到了66%。
AlphaCode是如何读题写码的
所以,AlphaCode究竟是凭借什么原理达成这一“战果”的呢?
它仍然基于预训练-微调的范式打造,采用Transformer架构,其中编码器具备“ 解读能力 ”,解码器则具备“ 写码能力 ”。
这次发表在Science上的论文,也给出了更直观的原理图,并以作为案例,讲解具体训练的过程。
在预训练(pre-training)时,研究人员会先整理出GitHub上的各种代码集,并“喂”给AlphaCode上的编码器和解码器。
以Python上的print(“hello”)为例,这里print()是一个常见的函数,即“打印输出”,”hello”则是具体需要打印输出的内容。
经过预训练后的模型,就具备了基本的“按指令完成任务”的要求,其中编码器负责生成指令,解码器则负责填充剩余的部分。
在微调(fine-tuning)环节,研究人员会整理出竞争性编程竞赛的数据集,包括问题和解决思路两部分,并以GOLD与tempering作为训练目标,进一步减少搜索空间。
其中,问题以注释#的形式交给编码器“学习”,解决思路则交给解码器来尝试理解:
微调完成后,解码器就懂得通过编码器生成注释的内容,来尝试输出对应的代码。
经过预训练-微调后,就来到了最终的评测环节。
Codeforces的题目会被直接以注释的形式交给编码器,解码器则尝试输出 数百万个 不同的程序,对它们进行过滤和聚类(cluster)之后,提交其中的10个程序来解决问题。
(当然前面也提到,有不少问题在第一次提交后就通过了)
对于AlphaCode的出现,有程序员调侃称“可以在艺术家旁边排队等领救济粮了。”
不过,DeepMind官方对于AlphaCode的定调并非“AI版程序员”,而是希望它作为一个 辅助 的角色出现在编程工作中:
论文地址:
参考链接:[1]
版权所有,未经授权不得以任何形式转载及使用,违者必究。