让AI自己调整超参数 83个任务训练加速比经典Adam更快 自适应不同任务 谷歌大脑新优化器火了 (ai怎么调)

让AI自己调整超参数 83个任务训练加速比经典Adam更快 自适应不同任务 谷歌大脑新优化器火了 (ai怎么调)

让AI自己调整超参数,谷歌大脑新优化器火了,自适应不同任务,83个任务训练加速比经典Adam更快

萧箫 来源: 量子位

项目代码已开源

还在苦恼怎么给 优化器 调整更好的参数吗?

现在,谷歌大脑搞出了一个新的优化器VeLO,无需手动调整任何超参数,直接用就完事了。

与其他人工设计的如Adam、AdaGrad等算法不同,VeLO完全基于AI构造,能够很好地适应各种不同的任务。

当然,效果也更好。论文作者之一Lucas Beyer将VeLO与其他“重度”调参的优化器进行了对比,性能不相上下:

有网友看到了一丝优化器进步的曙光:

所以,这个基于AI的优化器是如何打造的?

VeLO究竟是怎么打造的?

在训练神经网络的过程中,优化器(optimizer)是必不可少的一部分。

△神经网络训练过程,图源Thomas Wolf

但AI模型应用都这么广泛了,训练AI模型用的优化器却仍然是人工设计的,听起来多少有点不合理。

于是谷歌大脑的研究人员灵机一动:为何不用AI来做一个优化器呢?

设计 上,优化器的原理基于 元学习 的思路,即从相关任务上学习经验,来帮助学习目标任务。

相比迁移学习,元学习更强调获取元知识,它是一类任务上的通用知识,可以被泛化到更多任务上去。

基于这一思想,VeLO也会吸收梯度并自动输出参数更新,无需任何超参数调优,并自适应需要优化的各种任务。

架构 上,AI优化器整体由LSTM(长短期记忆网络)和超网络MLP(多层感知机)构成。

其中每个LSTM负责设置多个MLP的参数,各个LSTM之间则通过全局上下文信息进行相互协作。

训练 上,AI优化器采用元训练的方式,以参数值和梯度作为输入,输出需要更新的参数。

经过4000个TPU月(一块TPU运行4000个月的计算量)的训练,集各种优化任务之所长后,VeLO终于横空出世。

比人工调参优化器效果更好

结果表明,VeLO在83个任务上的加速效果超过了一系列当前已有的优化器。

其中y轴是相比Adam加速的倍率,x轴是任务的比例。

结果显示,VeLO不仅比无需调整超参数的优化器效果更好,甚至比仔细调整过超参数的一些优化器效果还好:

与“经典老大哥”Adam相比,VeLO在所有任务上训练加速都更快,其中50%以上的任务比调整学习率的Adam快4倍以上,14%以上的任务中,VeLO学习率甚至快上16倍。

而在6类学习任务(数据集+对应模型)的优化效果上,VeLO在其中5类任务上表现效果都与Adam相当甚至更好:

值得一提的是,这次VeLO也被部署在中,看来谷歌是真的很大力推广这个新框架了。

巴特,也有网友认为耗费4000个TPU月来训练VeLO,计算量成本过大:

目前VeLO已经开源,感兴趣的小伙伴们可以去试试这个新的AI优化器。

One More Thing

前段时间,一位哈佛博士生提了个有意思的想法,得到不少人赞同:

Kareem Carr是生物统计学领域的博士生,作者贡献在生物论文中比较常见,不过之前在AI论文中见得不多。

现在,这篇谷歌大脑论文的作者们也这样做了,谁写的论文、谁搭建的框架一目了然:

不知道以后会不会成为机器学习圈的新风气(手动狗头)。

GitHub地址:

论文地址:

参考链接:[1]

版权所有,未经授权不得以任何形式转载及使用,违者必究。
声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。