什么,PyTorch还能开发新药?哈佛推出这款工具包,10行代码训练“药神”模型
萧箫 来源: 量子位我就是AI“药神”
最近,来自哈佛大学等机构的研究人员,开发出了一个AI“药神”工具包,为加速 新冠疫情下的新药研发 助力。
这款名为 DeepPurpose 的工具包,不仅包含COVID-19的生物测定数据集,还有 56种前沿的AI模型 。
作为一个基于PyTorch的工具包,DeepPurpose只需要不到10行代码,就能训练出AI“药神”模型。
这些模型不仅能完成虚拟筛选,还能挖掘出已有药物的新功能(例如,高血压药物可治疗阿尔兹海默症)。
下面来看看它实现的原理。
56种前沿模型,功能齐全
DeepPurpose由两个编码器组成,分别用来生成药物分子和蛋白质的嵌入(Embedding),也就是深度学习过程中的映射。
随后,将这两个编码器串联到解码器中,用于预测二者的结合亲和力,如下图所示。
在这期间,模型的输入是药物靶标对(drug-target pair),输出则是指示药物-靶对的结合活性的分数。
当然,DeepPurpose毕竟是一个工具包,所以无论是药物分子、还是蛋白质,它们的编码器都 不止一种类型 。
对于药物分子,DeepPurpose提供了 8种编码器 。
在这些编码器中,有用于构造分子结构图的、有将绘制的分子转换成二进制数的、也有用于获取序列顺序信息的等……模型各有不同。
而对于靶蛋白,DeepPurpose也提供了 7种编码器 ,相较于药物的化学和信息学, 编码器对靶蛋白的转换更多地侧重于生物学信息。
也就是说,DeepPurpose一共能提供7*8=56种模型,其中许多模型非常新颖前沿,值得入手。
那么,DeepPurpose究竟该怎么上手呢?
10步以内,上手AI“药神”
事实上,训练一个新药研发模型,需要通过以下几个步骤,每一步都只需要用 1行代码 实现,所有这些步骤加起来,也 不超过10步 。
来看看这个模型要经过的步骤:
其中,DeepPurpose最关键的两个功能, 旧药新用 和 虚拟筛选 可以在训练后实现。可以看见,DeepPurpose会自动生成药物的亲和度,并由低到高进行排序。
这样,就能快速缩小高通量分子的筛选范围(如果亲和度为0,那真的不必考虑了)。
至于虚拟筛选,也是类似的工作,会生成一个与上图相似的排名列表。
不仅如此,这个AI模型还包含另外几种案例,例如SARS-CoV2 3CLPro的旧药新用方法、预训练模型等。
此外,针对近期引发关注的新冠疫情,DeepPurpose也包含了 MIT收集的COVID-19开源数据集 。
针对这些数据,工具包中有相应的函数,可以直接引用。
而这个工具包的框架,正是基于 药物研发的原理 制作的。
靶蛋白:药物作用对象
药物筛选最根本的原理,通常是判断药物分子与靶蛋白(药物作用的目标)的 亲和性 。
为什么是蛋白质?
事实上,这是因为部分疾病(例如癌症、肿瘤)产生的原因,通常与某一类蛋白质有关,如果能找到、并用药物“调节”这种蛋白质,就能治愈疾病。
例如,细胞与细胞之间的交流,依靠的就是细胞膜上的糖蛋白。而某种疾病发生的原因,可能就是因为一类细胞上的糖蛋白 过度表达 。
而这个糖蛋白,就被称之为疾病过程中的 靶蛋白 。
但能用来调节某种靶蛋白的药物,并不好找,毕竟不是每种化合物都能很好地与靶蛋白“贴贴”。
在这样的基础上,研究人员开发了DeepPurpose,这个工具包能用于预测药物分子与靶蛋白的亲和度,专业学术名词叫药物-靶标相互作用(Drug-Target Interaction, DTI),简称。
之所以选择用AI助力新药研发,也有其背后的原因。
AI助新药研发一臂之力
事实上,药厂研发出一种新药,需要 15年 左右,甚至更久。
而在这期间,光是 研究开发 的阶段,就要花掉 2-10年 。
研究开发的阶段,目的是筛选出有治疗潜力的新化合物,也就是说,每一种化合物都需要做实验,去不断试错。
这一过程不仅枯燥无味,而且工程量巨大,人力财力都得砸。
如果用AI完成药物筛选这一过程,对于新药研发的加速将会起到不小的作用。
作者介绍
论文的第一作者黄柯鑫,本科于纽约大学获得数学和计算机双学位,目前在哈佛大学读硕士,专业与医疗大数据有关。
黄柯鑫的研究方向,主要是图神经网络(GNN)在新药研发和医疗文本(如电子病历等)上的应用。
此外,Tianfan Fu、Lucas Glass、Marinka Zitnik、Cao Xiao和Jimeng Sun也共同参与了研究工作。
传送门
论文链接:
项目链接:
黄柯鑫主页:
版权所有,未经授权不得以任何形式转载及使用,违者必究。