如何使用Pandas处理超过内存容量的大规模数据 (如何使用pandas读写excel文件)

如何使用Pandas处理超过内存容量的大规模数据 (如何使用pandas读写excel文件)

开展数据科学项目中的一个重要步骤,就是从 API 下载数据并加载到本地内存,之后才能处理数据。

在上述过程中需要解决一些问题,其中之一就是数据量过大。如果数据量超出本机内存的容量,项目执行就会产生问题。

对此有哪些解决方案?

有多种解决数据量过大问题的方法。它们或是消耗时间,或是需要增加投资。

可能的解决方案

只要资源允许,这两种解决方法均可行。如果项目资金充裕,或是不惜任何时间代价,那么上述两种方法是最简单也是最直接的解决方案。

但如果情况并非如此呢?也许你的资金有限,或是数据集过大,从磁盘加载将增加 5~6 倍甚至更多的处理时间。是否有无需额外资金投入或时间开销的大数据解决方案呢?

这个问题正中我的下怀。

有多种技术可用于大数据处理,它们无需额外付出投资,也不会耗费大量加载的时间。本文将介绍其中三种使用 Pandas 处理大规模数据集的技术。

压缩

第一种技术是数据压缩。压缩并非指将数据打包为 ZIP 文件,而是以压缩格式在内存中存储数据。

换句话说,数据压缩就是一种使用更少内存表示数据的方法。数据压缩有两种类型,即无损压缩和有损压缩。这两种类型只影响数据的加载,不会影响到处理代码。

无损压缩

无损压缩不会对数据造成任何损失,即原始数据和压缩后的数据在语义上保持不变。执行无损压缩有三种方式。在下文中,将使用美国按州统计的新冠病毒病例数据集依次介绍。

例子中所使用的数据集具有如下结构:

import pandas as pddata = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv")data.sample(10)
复制代码

加载整个数据集需要占用 111MB 内存!

如果我们只需要数据集中的两列,即州名和病例数,那么为什么要加载整个数据集呢?加载所需的两列数据只需 36MB,可降低内存使用 32%。

使用 Pandas 加载所需数据列的代码如下:

本节使用的代码片段如下:

#加载所需软件库Import needed libraryimport pandas as pd#数据集csv = "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv"#加载整个数据集data = pd.read_csv(csv)data.info(verbose=False, memory_usage="deep")#创建数据子集df =>df.info(verbose=False, memory_usage="deep")#加速所需的两列数据df_2col = pd.read_csv(csv , usecols=["county", "cases"])df_2col.info(verbose=False, memory_usage="deep")
复制代码

代码地址:另一个降低数据内存使用量的方法是截取数值项。例如将 CSV 加载到>

如果可预先确定数值不大于 32767,那么就可以使用 int16 或 int32 类型,该列的内存占用能降低 75%。

假定每个州的病例数不超过 32767(虽然现实中并非如此),那么就可截取该列为 int16 类型而非 int64。

如果数据集的一或多个列中具有大量的 NaN 空值,那么可以使用稀疏列表示降低内存使用,以免空值耗费内存。

假定州名这一列存在一些空值,我们需要跳过所有包含空值的行。该需求可使用 pandas.sparse 轻松实现(译者注:原文使用 Sparse Series,但在 Pandas 1.0.0 中已经移除了 SparseSeries)。

有损压缩

如果无损压缩并不满足需求,还需要进一步压缩,那么应该如何做?这时可使用有损压缩,权衡内存占用而牺牲数据百分之百的准确性。

有损压缩有两种方式,即修改数值和抽样。

第二种技术:数据分块(chunking)

另一个处理大规模数据集的方法是数据分块。将大规模数据切分为多个小分块,进而对各个分块分别处理。在处理完所有分块后,可以比较结果并给出最终结论。

本文使用的数据集中包含了 1923 行数据。

假定我们需要找出具有最多病例的州,那么可以将数据集切分为每块 100 行数据,分别处理每个数据块,从这各个小结果中获取最大值。

本节代码片段如下:

#导入所需软件库import pandas as pd#数据集csv = "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv"#循环处理每个数据块,获取每个数据块中的最大值for chunk in pd.read_csv(csv, chunksize=100):max_case = chunk["cases"].max()max_case_county = chunk.loc[chunk['cases'] == max_case, 'county'].iloc[0]result[max_case_county] = max_case#给出结果print(max(result, key=result.get) , result[max(result, key=result.get)])
复制代码

代码地址:top="4534.890625">第三种方法:索引

数据分块非常适用于数据集仅加载一次的情况。但如果需要多次加载数据集,那么可以使用索引技术。

索引可理解为一本书的目录。无需读完整本书就可以获取所需得信息。

例如,分块技术非常适用于获取指定州的病例数。编写如下的简单函数,就能实现这一功能。

索引 vs 分块

分块需读取所有数据,而索引只需读取部分数据。

上面的函数加载了每个分块中的所有行,但我们只关心其中的一个州,这导致大量的额外开销。可使用 Pandas 的数据库操作,例如简单的做法是使用 SQLite 数据库。

首先,需要将>

import sqlite3csv = "https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-counties.csv"# 创建新的数据库文件db = sqlite3.connect("cases.sqlite")# 按块加载CSV文件for c in pd.read_csv(csv, chunksize=100):# 将所有数据行加载到新的数据库表中c.to_sql("cases", db, if_exists="append")# 为“state”列添加索引db.execute("CREATE INDEX state ON cases(state)")db.close()
复制代码

代码地址:为使用数据库,下面需要重写 get_state_info 函数。

这样可降低内存占用 50%。

小结

处理大规模数据集时常是棘手的事情,尤其在内存无法完全加载数据的情况下。一些解决方案或是耗时,或是耗费财力。毕竟增加资源是最简单直接的解决方案。

但是在资源受限的情况下,可以使用 Pandas 提供的一些功能,降低加载数据集的内存占用。其中的可用技术包括压缩、索引和数据分块。

原文链接:

声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。