想了解大厂如何做推荐 Facebook开源深度学习推荐模型DLRM (想了解大厂如何找工作)

想了解大厂如何做推荐 Facebook开源深度学习推荐模型DLRM (想了解大厂如何找工作)

如图 1 所示,DLRM 基准由计算主导的 MLP 和内存容量有限的嵌入组成。因此,它自然需要依靠数据并行性来提升 MLP 的性能,并且依赖模型并行化来满足内嵌对内存容量的需求。DLRM 基准测试提供了一个遵循此方法的并行实现。在交互过程中,DLRM 需要一个高效的全通信原语,我们称之为蝴蝶式洗牌(butterfly shuffle)。它将每个设备上 minibatch 的嵌入查找结果重新洗牌,分配到所有设备上,成为 minibatch 嵌入查找的一部分。如下图所示,每种颜色表示 minibatch 的不同元素,每个数字表示设备及其分配的嵌入。我们计划优化系统,并在以后的博客中公布性能研究细节。

声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。