在有赞的实践 Druid (在有赞工作是怎样一种体验)

在有赞的实践 Druid (在有赞工作是怎样一种体验)

一、Druid 介绍

Druid 是 MetaMarket 公司研发,专为海量数据集上的做高性能 OLAP (OnLine Analysis Processing)而设计的数据存储和分析系统,目前 Druid 已经在 Apache 基金会下孵化。Druid 的主要特性:

Druid 常见应用的领域

二、为什么我们需要用 Druid

有赞作为一家 SaaS 公司,有很多的业务的场景和非常大量的实时数据和离线数据。在没有是使用 Druid 之前,一些 OLAP 场景的场景分析,开发的同学都是使用 SparkStreaming 或者 Storm 做的。用这类方案会除了需要写实时任务之外,还需要为了查询精心设计存储。带来问题是:开发的周期长,初期的存储设计很难满足需求的迭代发展,不可扩展。

在使用 Druid 之后,开发人员只需要填写一个数据摄取的配置,指定维度和指标,就可以完成数据的摄入。从上面描述的 Druid 特性中我们知道,Druid 支持 SQL,应用 APP 可以像使用普通 JDBC 一样来查询数据。通过有赞自研 OLAP 平台的帮助,数据的摄取配置变得更加简单方便,一个实时任务创建仅仅需要 10 来分钟,大大的提高了开发效率。

2.1 Druid 在有赞使用场景

三、Druid 的架构

Druid 的架构是 Lambda 架构,分成实时层( Overlord、 MiddleManager )和批处理层( Broker 和 Historical )。主要的节点包括(PS: Druid 的所有功能都在同一个软件包中,通过不同的命令启动):

四、有赞 OLAP 平台的架构和功能解析

4.1 有赞 OLAP 平台的主要目标

4.2 有赞 OLAP 平台架构

有赞 OLAP 平台是用来管理 Druid 和周围组件管理系统,OLAP 平台主要的功能:

4.2 Tranquility 实例管理

OLAP 平台采用的数据摄取方式是 Tranquility 工具,根据流量大小对每个>

4.3 解决数据迟延问题———离线数据补偿功能

流式数据处理框架都会有时间窗口,迟于窗口期到达的数据会被丢弃。如何保证迟到的数据能被构建到 Segment 中,又避免实时任务窗口长期不能关闭。我们研发了 Druid 数据补偿功能,通过 OLAP 平台配置流式 ETL 将原始的数据存储在 HDFS 上,基于 Flume 的流式 ETL 可以保证按照 Event 的时间,同一小时的数据都在同一个文件路径下。再通过 OLAP 平台手动或者自动触发 Hadoop-Batch 任务,从离线构建 Segment。

基于 Flume 的 ETL 采用了 HDFS Sink 同步数据,实现了 Timestamp 的 Interceptor,按照 Event 的时间戳字段来创建文件(每小时创建一个文件夹),延迟的数据能正确归档到相应小时的文件中。

4.4 冷热数据分离

随着接入的业务增加和长期的运行时间,数据规模也越来越大。Historical 节点加载了大量 Segment 数据,观察发现大部分查询都集中在最近几天,换句话说最近几天的热数据很容易被查询到,因此数据冷热分离对提高查询效率很重要。Druid 提供了 Historical 的 Tier 分组机制与数据加载 Rule 机制,通过配置能很好的将数据进行冷热分离。

首先将 Historical 群进行分组,默认的分组是"_default_tier",规划少量的 Historical 节点,使用 SATA 盘;把大量的 Historical 节点规划到 “hot” 分组,使用 SSD 盘。然后为每个>


 复制代码
 

提高 "hot"分组集群的 druid.server.priority 值(默认是 0),热数据的查询都会落到 “hot” 分组。

4.5 监控与报警

Druid 架构中的各个组件都有很好的容错性,单点故障时集群依然能对外提供服务:Coordinator 和 Overlord 有 HA 保障;Segment 是多副本存储在 HDFS/S3 上;同时 Historical 加载的 Segment 和 Peon 节点摄取的实时部分数据可以设置多副本提供服务。同时为了能在节点/集群进入不良状态或者达到容量极限时,尽快的发出报警信息。和其他的大数据框架一样,我们也对 Druid 做了详细的监控和报警项,分成了 2 个级别:

五、挑战和未来的展望

5.1 数据摄取系统

目前比较常用的数据摄取方案是:KafkaIndex 和 Tranquility 。我们采用的是 Tranquility 的方案,目前 Tranquility 支持了 Kafka 和 Http 方式摄取数据,摄取方式并不丰富;Tranquility 也是 MetaMarket 公司开源的项目,更新速度比较缓慢,不少功能缺失,最关键的是监控功能缺失,我们不能监控到实例的运行状态,摄取速率、积压、丢失等信息。

目前我们对 Tranquility 的实例管理支持启停,扩容缩容等操作,实现的方式和 Druid 的 MiddleManager 管理 Peon 节点是一样的。把 Tranquility 或者自研摄取工具转换成 Yarn 应用或者 Docker 应用,就能把资源调度和实例管理交给更可靠的调度器来做。

5.2 Druid 的维表 JOIN 查询

Druid 目前并不没有支持 JOIN 查询,所有的聚合查询都被限制在单>

5.3 整点查询 RT 毛刺问题

对于 C 端的 OLAP 查询场景,RT 要求比较高。由于 Druid 会在整点创建当前小时的 Index 任务,如果查询正好落到新建的 Index 任务上,查询的毛刺很大,如下图所示:

我们已经进行了一些优化和调整,首先调整 warmingPeriod 参数,整点前启动 Druid 的 Index 任务;对于一些 TPS 低,但是 QPS 很高的>

5.4 历史数据自动 Rull-Up

现在大部分>

声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。