《高效 MySQL 性能》(Efficient MySQL Performance)第五章论述了分片问题,这个问题很难写,但并不是因为技术原因。关于这一问题,让我多说几句。
我的误解
这是我从第五章中删除的一段话和脚注:
我删除了这一段(以及脚注),原因是其中有误导或错误,正如 Fernando Ipar(我的技术审稿人之一)指出的那样:
我经常有 Date 和 iPar 所说的误解,如果不是 iPar 纠正我的话,我差点也会把同样的想法付诸印刷。更糟糕的是,我实际上还陈述了两个有些矛盾的理由:
从表面上来看,这不是一个明显的逻辑错误,但它是错误的:1 是真的,但 2 并不是由 1 得出的。
诚然,从 20 世纪 70 年代一直到 21 世纪初,硬件体积都很庞大且价格昂贵(与今天的情况相比)。因此,企业不可能随心所欲地提供 100 个新数据库。(作为参考,亚马逊 EC2 于 2006 年发布。)采购任何服务器就如同购买一辆汽车:一项谨慎而又代价高昂的决策,打算拥有并持续运营数年之久。需要更多的容量?扩大现有服务器的规模:更多的内存,更大的硬盘,诸如此类。还需要更多的容量?那就购买“更大”的服务器:支持更快的 CPU,更多的 RAM 芯片,更多的硬盘托架,诸如此类。
但是,“关系型数据库不是为了横向扩展而设计的”这一说法并不正确。我不应该加上这句话,因为这正是 Date 在他书里第一章抨击的误解,这有充分的理由。引用 Date 的话:性能从根本上说是一个实现问题,而不是一个模型问题。规模是性能的一部分。
我们能避免分片吗?
现在是 2022 年 5 月,1 TB 的内存是存在的,但远非常态。最大的亚马逊云科技 RDS 实例类型是
db.x1e.32xlarge
,具有 3904 GB 内存,几乎 4 TB。这令人印象深刻,但是我不想这样:我希望它是 2022 年的规范。
如果 TB 级的内存是常态,那么单个 MySQL 实例就有望能够处理几十 TB 的数据。我之所以强调“可能”,是因为尽管内存在避免分片时起着至关重要的作用,但它并不是唯一的因素。有时候,为了扩展写操作,需要进行分片。在这种情况下,存储 I/O 和延迟就成了更关键的因素。一些插到 PCIe 插槽的 NVMe 系统具有令人难以置信的性能,但就像 TB 级的内存一样,它们远非常态。即使内存和存储 I/O 解决了问题,那么网络传输速度呢?以 10Gbps 的速度传输 10TB 需要大约 2 小时。有更快的网速,但它们现在也还不是常态。
不要忘记模式迁移(OSC)和其他数据操作。目前,MySQL 只有两个 OSC 工具:pt-online-schema-change 和 gh-ost。这两者都可以处理 TB 级的数据,但都没有真正地优化速度或并行性,所以 TB 级的数据需要花上很多小时才能改变。
我认为,目前使用 MySQL(或其他类似的关系型数据库)是不可能避免分片的,原因是数据的增长速度已经远远超过了 MySQL 的硬件和工具。在过去的 20 年里,MySQL 做了很好的工作,但我认为,由于普遍可用的(和可负担得起的)硬件和工具,它已经接近了一个软极限。现在,我想这个软极限是 10TB 的数据——具有有利的(即轻量级)访问模式,较小的工作集大小,以及相对稳定的模式(或一个真正有耐心的团队/公司)。
数据增长与云计算
数据量不断增加。即使不在技术领域内,人们也知道数年前的设备能够存储 5GB 的数据,而现在可以存储 256GB。iPod 就是一个例子:人们意识到“我可以存储更多的数据”。(这个例子很及时,因为苹果公司的 iPod 在 20 年才停产)。让我们姑且假定这种长期存在的趋势是合理的,而不是由于数据膨胀或浪费。(我个人觉得,我们对数据的浪费是非常严重的,这就是为什么我在《高效 MySQL 性能》的第三章和第四章中详细阐述了这个问题)。
自从计算机出现以来,硬件的容量就在迅速增加(而成本在下降),这在技术领域也是广为人知的。因此,它跟上了数据增长的步伐,以至于不需要改变范式:只要继续购买更大的硬件(因为它变得更低廉),问题就解决了。这就是旧的范式:扩展你已经拥有的硬件规模。我只是泛泛而谈,总是有一些例外。
但近年来,有四件事发生了变化:
第 1 点说得很谨慎,因为硬件容量肯定一直在增加;第 2 点才是掩盖了第 1 点的主要变化,并使之复杂化。数据增长很容易爆炸,因为产生数据很容易。在市场上开发和推广硬件要困难得多(而且缓慢),因为大的变化需要其他新的硬件(例如从 SATA 到 PCIe)、新的内核和驱动程序,以及能够充分利用前面提到的新应用。
数据飞速增长,硬件也在努力追赶,云(第 3 点)在 2006 年亚马逊 EC2 推出时悄无声息地出现。但是,云实际上不过是另一个你租用而不是拥有的服务器。这意味着,亚马逊云科技(和其他云厂商)在幕后所使用的硬件和你可能原本计划购买的一样。(这不再是实际情况了,有些云厂商定制了他们自己的硬件)。
但云还是很有用的,因为它提供了一个抽象层,隐藏了采购和管理硬件的复杂性。人们经常使用“弹性”这个词:云中的计算资源具有弹性。这意味着你能够持续地将更多的数据存储到云端中,而无需过多关注其运行方式。
从这个角度来说,云是一个重大的演变,因为在云之外,真正的挑战不在于“我可以买一个足够大的硬盘吗?”(你可以),而在于“我可以以多快的速度采购和配置硬件,以及它可以持续多久?”公司不可能(也不会)每年不顾一切地购置新硬件。
相反,他们会计划、预算、购买、等待、接收、“上架”,最后(有时是几个月后)让新硬件上线。鉴于这种努力,公司要求硬件工作多年以彻底收回投资。这就是公司难以与爆炸性增长的数据保持同步的原因。但是,云改变了这一点。它抽象化了采购和管理硬件的复杂性:你只要按需租用你所需的任何东西就可以了。
云对于改变这种范式来说是必要条件,但还并不够。你可以提供所有你想要的资源,但是如果你这么做了,你又会遇到另外一个问题:如何放养这些传说中的猫?这句话的意思是:你可以提供一个资源集群,但你如何控制并管理它?
在 2013 年和 2014 年,Docker 和 Kubernetes 相继问世。这些都是容器化的技术(以及延伸到微服务),但它们都是使编排大规模的云资源集群变得可行的最终必需。所以,我们现在能够用编程方式(而且有点容易)来提供并编排几乎无限的云资源,并以“弹性”方式(通常是创建和销毁并重新创建资源)。
现在范式已经改变了,因为在云中,实际上没有任何限制;这只是一个你能负担得起的问题。笼统地说,新的范式是:“只要在云中扩展规模”。(其中“只要”一词意味着,考虑到编排工具,这应该是很容易的,但“容易”这个词显然是高度相对的。)
新范式中的 MySQL
回到 MySQL,围绕它的范式已经发生了改变。
一方面,我们有像 MySQL 这样的关系型数据库,这些数据库是在范式改变之前很久就创建了——当时的范式仍然是“扩大规模”:购买更大、更快的硬件。我认为对于 2000 年以后出生的工程师来说,了解这段历史很重要。
MySQL、Postgres 和类似的产品是在云或 Kubernetes 之前很久就问世了。在那时, “启动”的想法根本不可能。标准是扩大你已经拥有的资源,因为公司不愿意也不喜欢购买新硬件。这就是为什么 MySQL 在扩展方面非常出色,但却不能原生横向扩展的部分原因(为什么需要分片)。
另一方面,现代软件开发正在转向新范式,在新范式几乎没有资源限制:只要为你想要的大小/规模配置 Kubernetes(或任何编排工具),它(通常)就会提供任何需要的东西。(说“通常”是因为,如果你不知道,云有时确实会暂时耗尽资源)。
不足为奇的是,开发人员希望他们的数据库也可以做到这一点,但发现他们无法使用 MySQL、Postgres 和其他类似的数据库。这可如何是好?
NewSQL 与创新者的困境
我们越来越多地看到 NewSQL 数据存储,它将数据库的计算层和存储层分开,这样就可以通过编排在云中进行横向扩展。考虑到范式的变化,这样做是有意义的;考虑到硬件和工具没有保持在数据增长曲线的前面,这也是有意义的。
例如,如果有硬件和工具可以轻松处理单个 100TB 的 MySQL 实例,那么 NewSQL 很可能就不会有市场。但目前情况并非如此。因此,为了使 MySQL 达到一定规模,开发人员必须实施和维护应用级分片,或者转向 NewSQL。
虽然分片已经被证明是行之有效的(关于 MySQL 分片已经有了很多知识和成功案例),但这仍然是一项非开发任务,开发人员经常告诉我他们不想做。
我不能责怪他们:他们被雇来开发应用程序的功能——而我被雇来为他们扩展数据库。(当然,我希望他们不要再这么浪费数据了,不过我要这么说就是跑题了。)
我认为我们正在见证“创新者的困境”。单一实例上的 SQL 是现任者:一个巨大的价值网络,它扎根于四十年的成功经验。NewSQL 是一家颠覆性的小微初创企业,目前正致力于解决一个利基问题,而且它似乎没有占据主要的市场份额(小的价值网络)。NewSQL 有可能取代现任者,包括 MySQL,特别是当等产品明确地与 MySQL 兼容,以进入现任者的价值网络时。
而毫不奇怪的是,NewSQL 的一个障碍是成本。NewSQL 数据库更为复杂,这需要更多的云资源,而且成本也更高。但我们也看到了这种情况:随着颠覆者市场份额的增加,成本也会下降。
题外话:Vitess 和类似产品并不是颠覆者:它们是现有价值网络到新价值网络的桥梁。如果真正的颠覆者获胜,这些桥梁就将慢慢消失。
那么,重点是什么?
对 MySQL 进行分片仍然是必要的,因为我们还处于一个不确定的时期,还不知道怎么可以避免分片:要么是负担得起的硬件容量大爆发(这实际上只是提供了更多的跑道,将问题进一步推向未来),要么是 NewSQL 成功颠覆了传统 SQL,成为主流。
似乎符合逻辑的是,在未来,软件工程师将不必处理应用级别的分片,因为那并不是他们真正的工作,而且 NewSQL 已经证明它不需要存在。这就是为什么我个人认为 NewSQL 会获胜,但是至少需要 5 年时间,更现实的是 10 年。
不过不用担心,MySQL 和其他单实例关系型数据库将在更长时间内继续发挥重要作用,以至于今天学习 MySQL 几乎是必需的,因为它无处不在。
原文链接: