隐私 AI 系统存在的目的就是赋能 AI,使得各种 AI 场景下对用户隐私数据的使用都是安全的。那么,这样的系统就需要提供充分的保障,从理论到工程实现的每一个阶段都应该是经得起推敲、抵抗得住各种攻击的。不能简单的认为只需要各方先在本地自己的数据上计算出一个模型,然后将模型结果交换一下计算下其模型参数的平均值,就不会泄露各方的隐私数据了。现代密码学(Cryptography)是建立在严格的数学定义、计算复杂度假设和证明基础之上的,其中 MPC (Multi-Party Computation)方向是专门研究多个参与方如何正确、安全的进行联合计算的子领域,、TF Encrypted等隐私 AI 框架都采用了 MPC 技术以提供可靠的安全性。下面我们就结合具体案例看的看下在 Rosetta 中隐私数据是如何得到安全保护的。