日常工作中,数据开发工程师开发上线完一个任务后并不是就可以高枕无忧了,时常会因为上游链路数据异常或者自身处理逻辑的 BUG 导致产出的数据结果不可信。而这个问题的发现可能会经历一个较长的周期(尤其是离线场景),往往是业务方通过上层数据报表发现数据异常后 push 数据方去定位问题(对于一个较冷的报表,这个周期可能会更长)。同时,由于数据加工链路较长需要借助数据的血缘关系逐个任务排查,也会导致问题的定位难度增大,严重影响开发人员的工作效率。更有甚者,如果数据问题没有被及时发现,可能导致业务方作出错误的决策。此类问题可统一归属为大数据领域数据质量的问题。本文将向大家介绍伴鱼基础架构数据团队在应对该类问题时推出的平台化产品-数据质量中心(Data Quality Center, DQC)的设计与实现。
调研
业内关于数据质量平台化的产品介绍不多,我们主要对两个开源产品和一个云平台产品进行了调研,下面将一一介绍。
Apache Griffin
Apache Griffin是 eBay 开源的一款基于 Apache Hadoop 和 Apache Spark 的数据质量服务平台。其架构图如下:
架构图从 High Level 层面清晰地展示了数据质量平台的三个核心流程:
同时,平台对数据质检规则进行了分类(这也是目前业内普遍认可的数据质量的六大标准):
目前该开源项目仅在 Accuracy 类的规则上进行了实现。
Griffin 是一个完全闭环的平台化产品。其质检任务的执行依赖于内置定时调度器的调度,调度执行时间由用户在 UI 上设定。任务将通过 Apache Livy 组件提交至配置的 Spark 集群。这也就意味着质检的实时性难以保障,我们无法对产出异常数据的任务进行强行阻断,二者不是在同一个调度平台被调度,时序上也不能保持串行。
是微众银行开源的一款数据质量管理系统。同样,它提供了一整套统一的流程来定义和检测数据集的质量并及时报告问题。从整个流程上看我们依然可以用 Define、Measure 和 Analyze 描述。它是基于其开源的另一款组件 Linkis 进行计算任务的代理分发,底层依赖 Spark 引擎,同时可以与其开源的 top="2065.0625">DataWorks 数据质量
是阿里云上提供的一站式大数据工场,其中就包括了数据质量在内的产品解决方案。同样,它的实现依赖于阿里云上其他产品组件的支持。不过不得不说 top="2196.0625">设计目标
经过一番调研,我们确定了 DQC 的设计目标,主要包括以下几点:
系统设计
背景补充
伴鱼离线调度开发平台是基于Apache Dolphinscheduler(下文简称 DS)实现的。它是一个分布式去中心化,易扩展的可视化 DAG 调度系统,支持包括 Shell、Python、Spark、Flink 等多种类型的 Task 任务,并具有很好的扩展性。架构如下图所示:
Master 节点负责任务的监听和调度,Worker 节点则负责任务的执行。值得注意的是,每一个需要被调度的任务必然需要设置一个调度时间的表达式(cron 表达式),由 Quartz 定时为任务生成待执行的 DAG Command,有且仅有一个 Master 节点获得执行权,掌管该 DAG 各任务节点的调度执行。
整体架构
以下是平台整体的架构图:
由以下几部分组成:
下文主要阐述我们在各模块设计上的一些思考和权衡。
规则表述
标准与规则
前文在调研部分提及了业内普遍认可的数据质量的六大标准。那么问题来了:
可以将这些问题统一归类为:平台在规则设定上是否需要和业界数据质量标准所抽象出来的概念进行绑定。很遗憾我们并没有找到有关数据质量标准更加细化和指导性的描述,事实上作为一个开发人员这些概念对于我来说是比较费解的,而更贴近程序员视角的方式是「show me the code」,因此我们决定将这一层概念弱化。未来更深入的实践过程后再做更细化的思考。
标量化
接下来我们着重讨论下另一个问题:
其实当我们跳脱出前文所描述的一切背景和概念,仔细思考下数据质检的过程,会发现本质上就是通过一次真实的任务执行产出结果,然后对比输出结果与期望是否满足,以验证任务逻辑的正确性。这个过程可形象得和 Unit Testing 进行类比,只不过 Unit Testing 是通过模拟数据构造的一次代码逻辑的执行。另外数据任务执行产生的结果是一张二维结构的 Hive 表,需要进行加工方能获取到想要的统计结果,这也是两者的区别之一。
顺着这个思路,我们可以利用 Unit Testing 的概念从以下三方面继续深入:
Actual Value
数据任务执行产出的结果是一张 Hive 表,我们需要对这张 Hive 表的数据进行加工、提取以获得需要的 Actual Value。涉及到对 Hive 表的加工,必然想到是以 SQL 的方式来实现,通过 Query 和 一系列 Aggregation 操作拿到结果,此结果的结构又可分为以下三类:
显然单行且单列的标量是我们期望得到的,因为它更易于结果的比较(事实上就目前我们所能想到的规则,都可以通过 SQL 方式提取为一个标量结果)。因此,在规则设计中,需要规则创建者输入一段用于结果提取的 SQL,该段 SQL 的执行结果需要为一个标量。
Expected Value
既然 Actual Value 是一个标量,那么 Expected Value 同样也是一个标量,需要规则创建者在平台输入。
上述标量的类型决定了断言的比较方式。目前我们只支持了数值型标量的比较方式,包含「大于」、「等于」及「小于」三种比较算子。如出现其他类型标量,需要扩充比较的方式。
以上三要素即可完整的描述规则想要表达的核心逻辑。如我们想要表述「字段为空异常」的规则(潜在含义:字段为空的行数大于 0 时判定异常),就可以通过以下设定满足:
规则管理
规则模板
规则模板是为了规则复用抽象出的一个概念,模板中包含规则的 SQL 定义、规则的比较方式、参数定义(注:SQL 中包含一些占位符,这些占位符将以参数的形式被定义,在规则实体定义时需要用户明确具体含义)以及其他的一些元信息。下图为「字段空值的行数」模板的示例:
规则实体
规则实体是基于规则模板构建的,是规则的具象表达。在规则实体中将明确规则的 Expected Value、比较方式中具体的比较算子、参数的含义以及其他的一些元信息。基于同一个规则模板,可以构造多个规则实体。下图为「某表 user_id 唯一性校验」规则的示例:
值得一提的是,规则可能不仅仅只是针对单表的校验,对于多表的情况我们这套规则模板同样是适用的,只要我们可以将逻辑使用 SQL 表达。
规则绑定
在 DS 的前端交互上支持为任务直接绑定校验规则,规则列表通过 API 从 DQC 获取,这种方式在用户的使用体验上存在一定的割裂(规则创建和绑定在两个平台完成)。同时,在 DQC 的前端亦可以直接设置关联调度,为已有任务绑定质检规则,任务列表通过 API 从 DS 获取。同一个任务可绑定多个质检规则,这些信息将存储至 DS 的 DAG 元信息中。那么这里需要考虑几个问题:
主要有两种方式:
我们选择了后者,ID List 方式可以使对 DS 的侵入降到最低。
规则执行
强规则和弱规则
规则的强弱性质由用户为任务绑定规则时设定,此性质决定了规则执行的方式。
强规则
和当前所执行的任务节点同步执行,一旦规则检测失败整个任务节点将置为执行失败的状态,后续任务节点的执行会被阻断。对应 DS 中的执行过程表述如下:
弱规则
和当前所执行的任务节点异步执行,规则检测结果对于原有的任务执行状态无影响,从而也就不能阻断后续任务的执行。对应 DS 中的执行过程表述如下:
可以看出在强弱规则的执行方式上,对 DS 调度部分的代码有一定的侵入,但这个改动不大,成本是可以接受的。
DQC Task & DQC SDK
上文提及到一个 Job Task 绑定的规则(可能有多个)将被转换为一个 DQC Task 被 DS 调度执行,接下来我们就讨论下 DQC Task 的实现细节以及由此引出的 DQC SDK 的设计和实现。
DQC Task 继承自 DS 中的抽象类 AbstractTask,只需要实现抽象方法 handle(任务执行的具体实现)即可。那么对于我们的质检任务,实际上执行逻辑可以拆分成以下几步:
最核心的步骤为 Query 的执行。Query 的实现方式又可分为两种:
Spark 实现
Presto SQL 实现
我们选择了后者,这种方式最易实现,离线场景这部分的计算耗时也可以接受。同时由于一个 DQC Task 包含多条规则,在拼接 SQL 时将同表的规则聚合以减少 IO 次数。不同的 SQL 交由不同的线程并行执行。
上述执行逻辑其实是一个完整且闭环的功能模块,因此我们想到将其作为一个单独的 SDK 对外提供,并以 Jar 包的形式被 DS 依赖,后续即便是更换调度引擎,这部分的逻辑可直接迁移使用(当然概率很低)。那么 DS 中 DQC Task 的 handle 逻辑也就变得异常简单,直接以 Shell 形式调用 SDK ,进一步降低对 DS 代码的侵入。
执行结果
单条规则的质检结果将在平台上直接展现,目前我们还未对任务级的规则进行聚合汇总,这是接下来需要完善的。对于质检失败的任务将向报警接收人发送报警。
实践中的问题
平台解决了规则创建、规则执行的问题,而在实践过程中,对用户而言更关心的问题是:
这些是很难通过平台自动实现的,因为平台理解不了业务的信息,平台能做的只能是通过质量检测报告给与用户反馈。因此这个事情需要具体的开发人员对核心场景进行梳理,在充分理解业务场景后根据实际情况进行设定。话又说回来,平台只是工具,每一个数据开发人员应当提升保证数据质量的意识,这又涉及到组织内规范落地的问题了。
未来工作
数据质量管理是一个长期的过程,未来在平台化方向我们还有几个关键的部分有待继续推进:
参考
Apache Griffin