AI芯片年终盘点 有些公司年产N片 有些N年产1片都难 (ai 芯片前景)

AI芯片年终盘点 有些公司年产N片 有些N年产1片都难 (ai 芯片前景)

芯片类型

在正式盘点之前,我们先来了解下芯片类型、芯片架构以及主要的应用场景(注:如果仅对盘点数据感兴趣,可以直接跳转到文章后半部分)。

从芯片技术类型来看,AI 芯片主要可以分为 GPU(图形处理器)、FPGA(现场可编程门阵列)、ASIC(专用集成电路) 、类脑芯片四大类。

其中,GPU 和 FPGA 因为具有较为成熟的技术,已经占据了市场上的大部分份额,目前由英伟达、英特尔、AMD、赛灵思等公司所主导;ASIC 的发展也不容小觑,虽然前期的投入成本较高,但因为平均性能强、功耗低等特点,ASIC 深受各大云厂商的喜爱(如谷歌的 TPU、华为的昇腾、阿里的含光等)。类脑芯片与这些 AI 芯片相比则有些特殊,它颠覆了传统的冯·诺依曼架构,以模拟人脑神经元结构为主,比如 IBM 的 TrueNorth芯片、清华大学的天机芯等。

(来源:中国AI芯片产业发展白皮书)

芯片架构

芯片架构,或者称其为指令集架构更为精确,它是计算机体系结构中与程序设计有关的部分,包含了基本数据类型、指令集、寄存器、寻址模式、存储体系等。谈及指令集架构,X86、ARM、RISC-V 是必不可少的部分,其中 X86 占据 PC 端市场、ARM 占据移动端市场、RISC-V 则主要是在 IoT 市场中应用。

IoT 市场是人工智能技术的主要落地应用场景,所以对于初创 AI 芯片公司来讲,开源的 RISC-V 指令集架构往往是一个重要选项。另外,RISC-V 指令集架构还具有灵活性、可扩展性的特点,基于该架构设计的 AI 芯片,往往在固定的 AI 应用场景中,可以达到较为理想的能源利用和运算效率。

除此之外,AI 芯片领域的指令集架构,并不像 PC 端的 X86 架构和移动端的 ARM 架构一样,哪怕是有 RISC-V 架构在前,AI 芯片指令集架构也未形成统一形式,各大公司也都有自研的 AI 芯片指令集架构,就比如:华为昇腾系列芯片采用的自研 CISC 指令集架构、寒武纪思元系列芯片采用的 MLUv02 指令集架构、地平线旭日、征程系列芯片采用的 BPU 架构、深鉴科技的自研 DPU 指令集架构······

应用场景

按照部署位置,AI 芯片可以分为云端部署和终端部署两种。其中云端部署的 AI 芯片大部分是指用于数据中心的 AI 训练芯片和 AI 推理芯片,终端部署的 AI 芯片则大部分是指用于移动终端、自动驾驶、智能家居等边缘终端应用场景的 AI 推理芯片。虽然由于算力的限制,终端位置并不适合用于 AI 模型的训练,但其碎片化的特点,反而使得终端推理市场的前景一片广阔。

AI 芯片应用价值领域分布(来源:中国AI芯片产业发展白皮书)

数据中心(云端)

数据中心,或者说是云端训练用 AI 芯片的市场主要是以英伟达的 GPU 为主,专用芯片 ASIC 为辅。相对于 ASIC 的“专用”局限性,目前包括全球排名前四(AWS、GCP、Microsoft Azure、阿里云)的公共云中,英伟达 GPU 的市场份额占到了 97%以上。

尽管当前的 AI 训练任务相关的解决方案有 3 种,英伟达的+计算平台,第三方异构计算平台+ AMD GPU 或 OpenCL + 英特尔/Xilinx FPGA,谷歌的+平台。但从市场份额、生态完善程度、性价比等方面比较来讲,大多数企业和开发者选择了英伟达的 GPU。

具体 AI 芯片份额

随着各大公司对云端战略的不断加码,又有谷歌 TPU 成功案例的引导,各大云厂商也开始不断推出自己的云端用 AI 芯片。比如亚马逊近期发布的云端推理用 Inferentia 芯片、华为推出的云端训练用昇腾系列芯片、阿里平头哥推出的云端推理用含光 800 等。事实上,云端推理用 AI 芯片市场是一种百家争鸣的局面,像百度、微软、Facebook、英特尔等巨头企业都有不同程度的涉及,只不过采用的技术类型并不统一而已。

移动终端

随着全球智能手机出货量趋于平稳,各智能手机厂商开始将 AI 性能作为竞争的重要因素之一,而搭载性能更佳的 AI 芯片则变成了智能手机厂商实现差异化竞争的标准手段。

华为海思推出的麒麟 970 是全球第一款集成专用神经网络处理单元(NPU)的 SoC 芯片,随后苹果发布的 A 系列芯片、高通的骁龙系列芯片也都集成有 AI 技术,从此 AI 芯片也就成为了智能手机的一种标准配置,并逐渐进入到普及阶段。

另外,在移动端,如智能手环、VR/AR 眼镜等可穿戴设备都将是 AI 芯片的潜在市场。换句话说,AI 芯片凭借在图像、语音方面的快速处理能力,将会为人们带来一种全新的人机交互方式,而就目前而言,像谷歌、苹果、华为、小米等诸多公司都已经不同程度的进军到了可穿戴设备市场,所以,移动终端中的 AI 芯片,也将会因此置于一个非常重要的位置。

智慧安防

人工智能技术在智慧安防中的应用尤为广泛,尤其是在平安城市、智慧城市等大方向建设的推动下,国内的安防行业不断扩大。而在智能安防系统中,AI 芯片是不可或缺的存在,对此,一大批 AI 芯片厂商涌入,其中既有寒武纪、地平线等 AI 芯片创企,也有传统安防芯片霸主华为海思的强势入局。

就解决方案而言,智慧安防有两种思路,一种是智能前置,另一种是智能后置,相对应的,在安防中 AI 芯片的部署也可以分为前置和后置,简单来说,就是利用云端推理和终端推理两种不同的推理方式,以实现智能分析、图像信号处理等作用。

不过出于对成本的考虑,现阶段的安防 AI 芯片多为终端推理用 AI 芯片,相关的安防芯片厂商,会将 AI 模块集成于摄像机 SoC 的芯片中,以达成 AI 技术集成的目的。然而,尽管云端推理的成本较高,安防领域的 AI 芯片也正在向着“云边结合”的方向发展,毕竟终端存在着诸如算力不足、算法要求高、运维难度大等缺点。

自动驾驶

对自动驾驶行业而言,芯片同样重要,除了搭建自动驾驶系统,其硬件基础车轨级 AI 芯片也是不容忽视的。换句话说,全栈系统开发和车规 AI 芯片开发是两个行业层面的工作,而目前的车规级 AI 芯片还处在从嵌入式 GPU 到 FPGA、ASIC 的转变阶段。

过去两年,自动驾驶企业主要是通过嵌入式 GPU 搭建自动驾驶系统,而一些有实力的企业会采用嵌入式 GPU+FPGA 的深度优化方案,未来的自动驾驶芯片则有可能慢慢向 FPGA+ASIC 的方向过渡。总之,自动驾驶技术的发展,和 AI 芯片的发展是密不可分的。

今年 8 月,地平线在世界人工智能大会上发布了中国首款车规级 AI 芯片征程2.0,搭配地平线自研的 Matrix 自动驾驶计算平台,可以提供 192 TOPS 的算力。除此之外,今年 4 月份,特斯拉也首次公开了他们的全自动驾驶(FSD)芯片,7 月份,马斯克在推特表示,将会对购买了全自动驾驶功能的用户免费更换 FSD 芯片;而对于自动驾驶领头羊——谷歌 Waymo,其应用了英伟达和英特尔的 FPGA 芯片。

2019 年国内 AI 芯片主要玩家盘点

阿里巴巴

1、玄铁 910

2、含光 800

华为

1、麒麟****990 5G

2、昇腾 910

3、昇腾 310

百度

昆仑系列芯片

燧原科技

邃思 DTU

寒武纪

1、思元 220

2、思元 270

地平线

1、征程 2.0

2、旭日 2.0

思必驰

依图科技

依图芯片 questcore(求索)

瑞芯微电子

紫光展锐

虎贲 T710

2019 年国际 AI 芯片主要玩家盘点

英特尔

NNP-T 和 NNP-I

英伟达

Orin 芯片

亚马逊

Inferentia 芯片

赛灵思

Virtex UltraScale+ VU19P

苹果

A13 仿生芯片

声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。