数据分片(Sharding)是分布式数据库分而治之 (Divide And Conquer) 这一设计思想的体现。过去的单机数据库在大数据量下往往面临存储和 IO 的限制,而分布式数据库则通过数据划分的规则,将数据打散分布至不同的机器或节点上,形成分布式存储,因此突破了单机存储空间和 IO 的瓶颈、使库表数据量可以无限拓展。
数据分片主要有范围分片或哈希分片这两种方式,而在实际数据库的实现中,往往呈现为分区和分桶两种形式。分区一般是按照时间或其他连续值对数据进行划分,在执行查询操作时可以通过分区裁剪过滤不必要的范围扫描,提升执行效率,同时也使得对分区数据的增删改等管理操作更为便捷。而分桶则是按照某个关键字执行哈希运算,将相同哈希值的数据放到一起,这样可以有效定位数据、避免数据倾斜。
在Apache Doris中,同样也遵从一定的数据分布规则。数据以关系表(Table)的形式进行呈现,会依次按照先分区(Partition)、再分桶(Bucket)的方式划分,最终在同一个分桶中的数据会形成数据分片(Tablet)。Tablet 是 Apache Doris 中多副本高可用、集群间数据调度与均衡的最小物理存储单位。
图 1:Table-Partition-Tablet 之间的关系
#现状与问题
在 Doris 中,分区与分桶是如何创建的?我们以一个网站站点的建表实例说明分区与分桶的创建方式,该网站的站点建表语句如下:
-- 该表记录了某个时间点,在某个站点上各个用户的pv数据
CREATE TABLE demo.test_tbl(
siteINT,-- 站点id
cityVARCHAR(64),-- 城市
userVARCHAR(32)DEFAULT '', -- 用户名
pvBIGINT -- pv量
) ENGINE=olap DUPLICATE KEY(sdate, site, city)
[PARTITION_DESC]
[BUCKET_DESC]
PROPERTIES ("replication_num" = "1");
复制代码
其中 [PARTITION_DESC] 表示创建分区的详细语句,[BUCKET_DESC] 表示创建分桶的语句。
创建分区
Apache Doris 支持两种分区形式,List Partition 与 Range Partition。
List Partition
List Partition 相当于对分区的列值进行枚举,因此选择的分区列最好是有区分度的可枚举值,例如本例中的 city。根据 city 列的枚举值创建多个 List Partition,则
PARTITION_DESC
可以写为:
-- 以city作为分区列,创建华北、东北、华中、西南等分区
PARTITION BY LIST(city)
PARTITION `p_huabei` VALUES IN ("beijing", "tianjin", "shijiazhuang"),
PARTITION `p_dongbei` VALUES IN ("shenyang", "dalian"),
PARTITION `p_huazhong` VALUES IN ("wuhan", "changsha")
PARTITION `p_xinan` VALUES IN ("chengdu", "chongqing")
复制代码
Range Partition
创建 Range partition 一般使用时间列,Range Partition 又可以分为静态和动态两种方式:
此类 Partition 的创建会生成一个左闭右开的区间,定义一个分区只需要指定右边界,该分区的左边界由上一个分区的右边界确定,
PARTITION_DESC
可以写为:
-- 以sdate这个时间列作为分区列,
PARTITION BY RANGE(sdate)
PARTITION `p2022` VALUES LESS THAN ("2023-01-01"),
PARTITION `p20230101` VALUES LESS THAN ("2023-01-02"),
PARTITION `pmax` VALUES LESS THAN ("9999-12-31")
复制代码
可以看出,p20230101 这个分区的左边界由 p2022 分区的右边界确定,而 pmax 的左边界由 p20230101 的右边界确定。需注意的是,此处为了举例说明动态分区,使用了一个很大的边"9999-12-31",实际业务中很少会直接创建从 2023-01-02 到 9999-12-31 的分区。
上述静态的分区需要手动指定边界,分区个数太多使用起来也不方便。动态 Range Partition 帮助我们解决了这个问题,只需指定一些分区的参数即可动态创建,PARTITION_DESC 相对更简单,只需指定哪个列作为分区列即可:
PARTITION BY RANGE(sdate)()
复制代码
剩余参数需要在进行配置:
PROPERTIES (
"dynamic_partition.enable" = "true",
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.start" = "-30",
"dynamic_partition.end" = "3",
"dynamic_partition.prefix" = "p",
"dynamic_partition.create_history_partition"="true",
"replication_num" = "1"
复制代码
动态分区参数说明如下:
创建分桶
分桶在物理层面即数据分片(Tablet)。在数据表完成分区后,指定部分列作为分桶列,将这些列数据中相同哈希值的数据合到一起,形成了 Tablet。一个表中 Tablet 总数量 = 分区数(Partition num)x 分桶数(Bucket num)x 数据副本数(Replication_num) 。
[BUCKET_DESC] 语句非常简单,只需要一句:
DISTRIBUTED BY HASH(site) BUCKETS 20
复制代码
此时指定以 site 列的哈希值作为分桶,并且分桶个数设置为 20 个, 需要注意的是这里的 20 仅作为示例,合适的分桶个数需要根据分区大小来确定 。实际上单个分桶即 Tablet 的数据量理论上没有上下界,但建议在的范围内,即假设分区大小为 20GB,那么分桶个数设置为 10-20 个是合适的。
不足与思考
从以上对分区分桶的介绍,相信有不少用户和读者仍能发现其中一些不足之处:
批量分区与 Auto Bucket 的设计与实现
克服数据库的复杂性是 Apache Doris 一直追求的目标之一,针对以上分区分桶存在的易用性问题,在 Apache Doris 最新的版本中已经得到解决。在 Apache Doris 1.2.1 版本中,我们新增了批量创建分区功能 ,简洁的语法和灵活的使用方式让批量创建历史分区更加得心应手;而针对分桶设置带来的学习成本, Apache Doris 在即将发布的 1.2.2 版本中新增了 Auto Bucket 自动分桶推算功能 ,分桶个数不再依赖于人工设置,通过规则的智能计算即可保证合理的数据划分,降低用户学习成本的同时还可以最大化提升用户开发效率。
批量创建分区
批量创建分区功能在前期充分调研了用户的需求,本着简洁、强大、易用的设计目标,将设计核心锁定在几个要素中:
结合前面提到的网站站点模型,假设其数据包含从几年前直到现在的全量信息,想要将十年内的数据按每一天一个分区进行创建。在批量分区功能中,
PARTITION_DESC
只需要一句,并且不用在中设置分区相关参数:
-- 当然,分区创建个数受到max_multi_partition_num参数控制,该值默认为4096,有需求可以修改
PARTITION BY RANGE(sdate)
FROM ("2013-01-01") TO ("2023-01-01") INTERVAL 1 DAY
)从这个 case 来看,批量分区功能的语法更为简洁,但该功能的易用性和灵活性远不止于此。
复制代码
从这个 case 来看,批量分区功能的语法更为简洁,但该功能的易用性和灵活性远不止于此。
假设有另一批数据:公司前几年的数据量较大且为冷数据,故可以将一年的数据合到一个分区里面;而后来因为业务迅速发展,需要将每一月的数据作为一个分区;随着公司业务进一步发展,按月分区已经不能满足快速增长的数据需求,需要按周进行分区;……;时至今日,公司每天产生海量数据,可能需要按小时分区才能符合需求。根据这个场景,不难写出批量分区创建的 PARTITION_DESC:
-- 此处需要注意,如果要使用小时级别的分区,则分区列必须是datetime类型
-- 同样的,分区创建个数也受到max_multi_partition_num参数控制
PARTITION BY RANGE(sdate)
FROM ("2000-01-01") TO ("2021-01-01") INTERVAL 1 YEAR,
FROM ("2021-01-01") TO ("2022-01-01") INTERVAL 1 MONTH,
FROM ("2022-01-01") TO ("2023-01-01") INTERVAL 1 WEEK,
FROM ("2023-01-01") TO ("2023-02-01") INTERVAL 1 DAY,
FROM ("2023-02-01 00") TO ("2099-12-31 23") INTERVAL 1 HOUR
复制代码
除了上述不同时间粒度的分区可以灵活组合外,还可以将静态 Range Partition 和批量分区功能结合起来。例如需要将该公司 2022-01-01 到 2023-01-01 的数据按天创建分区,2022-01-01 之前的数据归到一个名为"pold"分区中,我们可以将静态分区和批量分区组合起来,PARTITION_DESC 如下:
PARTITION BY RANGE(sdate)
PARTITION pold VALUES LESS THAN ("2022-01-01"),
FROM ("2022-01-01") TO ("2023-01-01") INTERVAL 1 DAY
复制代码
批量分区创建功能支持不同时间粒度,其语法简洁有力,且各种类型分区可以灵活组合,在面对大量历史分区和部分特殊分区的需求时,该功能显得游刃有余,可以极大提高开发效率。 批量分区功能 PR:
Auto Bucket 自动分桶推算
以往创建分桶时需要手动设定分桶数,而自动分桶推算功能是 Apache Doris 可以动态地推算分桶个数,使得分桶数始终保持在一个合适范围内,让用户不再操心桶数的细枝末节。首先说明一点,为了方便阐述该功能,该部分会将桶拆分为两个时期的桶,即初始分桶以及后续分桶。 从上文中创建分桶一节我们知道,
BUCKET_DESC
非常简单,但是需要指定分桶个数;而在自动分桶推算功能上,
BUCKET_DESC
的语法直接将分桶数改成"",并新增一个 Properties 配置即可:
-- 旧版本指定分桶个数的创建语法
DISTRIBUTED BY HASH(site) BUCKETS 20
-- 新版本使用自动分桶推算的创建语法
DISTRIBUTED BY HASH(site) BUCKETS AUTO
properties("estimate_partition_size" = "100G")
复制代码
新增的配置参数
estimate_partition_size
表示一个单分区的数据量。该参数是可选的,如果没有给出则 Doris 会将 estimate_partition_size 的默认值取为 10GB。从上文中已经得知,一个分桶在物理层面就是一个 Tablet,为了获得最好的性能,建议 Tablet 的大小在的范围内。那么自动分桶推算是如何保证 Tablet 大小处于这个范围内的呢?总结起来不外乎几个原则:
初始分桶推算
从原则出发,理解自动分桶推算功能的详细逻辑就变得简单了:首先来看初始分桶:
上述过程伪代码表现形式为:
int N = 计算N值;
int M = 计算M值;
int y = BE节点个数;
int x = min(M, N, 128);
if (x < N && x < y) {
复制代码
有了上述算法,咱们再引入一些例子来更好地理解这部分逻辑:
最终: 20*
可以看到,详细逻辑与原则是匹配的。
后续分桶推算
上述是关于初始分桶的计算逻辑,后续分桶数因为已经有了一定的分区数据,可以根据已有的分区数据量来进行评估。后续分桶数会根据最多前 7 个分区数据量的 EMA[1](短期指数移动平均线)值,作为
estimate_partition_size
进行评估。此时计算分桶有两种计算方式,假设以天来分区,往前数第一天分区大小为 S7,往前数第二天分区大小为 S6,依次类推到 S1;
根据上述算法,初始分桶个数以及后续分桶个数都能被计算出来。跟之前只能指定固定分桶数不同,由于业务数据的变化,有可能前面分区的分桶数和后面分区的分桶数不一样,这对用户是透明的,用户无需关心每一分区具体的分桶数是多少,而这一自动推算的功能会让分桶数更加合理。
自动分桶推算功能 PR:
效果
当我们有了合适的分区分桶时,导入数据导到 Doris 后,数据会依照建表语句中的分区分桶列进行存储。上述网站站点数据的存储示例如图示:
图 2:Doris 分区分桶后的数据存储
此时如果执行 SQL 查询:
select * from test_tbl where sdate = "2020-03-23"and site = 1
复制代码
根据谓词 sdate = "2020-03-23" 可以定位到分区 p20200323,谓词 site = 1 能定位到该分区下的 bucket_1。假设有 30 天数据,自动分桶推算得到的分桶个数为 20 个。则经过明确的分区分桶谓词下推,则可以将数据全表扫描量变为原来的 1/600(30 天*20 个桶 = 600), 极大减少了数据的扫描范围、提高了查询的效率 。
#总结
整体来看, 批量创建分区功能语法简洁有力 ,解决了用户针对大量历史数据分区创建的难题,既避免了手动创建大量分区的低效语法,又避免了动态分区大量参数的学习使用成本,且方式灵活多变、随意搭配组合各种类型的分区, 大大提升了 Doris 在建表过程中的易用性 。 自动分桶推断功能智能高效 ,用户不需再关心分桶的细枝末节,系统自动帮助用户扩缩不同分区的分桶数,真正做到桶随业务变, 降低学习成本的同时更是提升了查询效率 。在与社区用户持续沟通中,我们也不断收获着许多新的需求,例如分区列为非时间列等,因此后续我们仍将继续完善对其他分区列的支持,例如数字分区列的批量创建等。最后,我们期待倾听更多用户的声音,在不断回馈用户以极简易用的使用体验的同时,也期待有更多人参与到 Apache Doris 的建设中来,欢迎你的加入!
本文引用
[1]作者介绍:
许瑞亮,SelectDB 存储研发工程师
胡得潮,SelectDB 生态研发工程师
李仕杨,SelectDB 生态研发工程师