这个模型的训练是在 Jupyter Notebook 上完成的。这些代码训练并序列化我们将用于预测的模型。当问题收到评论时,GitHub Actions 工作流将被触发。如果评论包含前缀/predict,那么我们就开始解析评论,然后我们做一个预测并构造一个回复。最后一步,该消息由机器人在相同的问题下发回给用户。为了把事情做得更好,整个自定义操作将在 Docker 容器中运行。
这个模型的训练是在 Jupyter Notebook 上完成的。这些代码训练并序列化我们将用于预测的模型。当问题收到评论时,GitHub Actions 工作流将被触发。如果评论包含前缀/predict,那么我们就开始解析评论,然后我们做一个预测并构造一个回复。最后一步,该消息由机器人在相同的问题下发回给用户。为了把事情做得更好,整个自定义操作将在 Docker 容器中运行。