7个月后 GPT (7个月后宫缩频率)

7个月后 GPT (7个月后宫缩频率)

在我看来,现在的情况已经相对明确:GPT-2 并不像 OpenAI 想象的那么危险。

其 774 M 版本已经出现了一段时间,虽然其中的参数只有完整版的一半,但我认为两者之间的差别还不至于被称为质变。毕竟,OpenAI 的分阶段发布计划已经给我们带来了两次增量提升——从 124 M 到 355 M,再到如今的 774 M。每次加倍后的差异都只能用“微妙”来形容,而且体现出的优点与缺陷也基本没有变化。

今年以来,我花了不少时间鼓捣这些模型,对模型进行微调也成了一种新的爱好。具体来讲我尝试:

到目前为止,我觉得自己已经对 GPT-2 采样文本的整体质量与特性有了比较明确的感受。总体来讲, 这套模型擅长各种有趣的生成方向,但其中最不擅长的,反而是人们原本担心的生成虚假信息或者其它不良内容

它最擅长的是小型文本生成——其成果确实令人感到不安,特别是在语言风格方面,完全符合我对于逐字、逐句、逐段内容设定的“良好写作”要求。但是,它 在较大规模的行文结构上表现较差 ,比如很难长期保持统一的主题或者(特别是)利用多个句子中的子句进行结构化论证。

直观来看:GPT-2 只能从文本当中学习,因此在需要引入其它外部世界模式的领域(因为我们在书写文字时,总会或多或少地引入自己对于真实世界的理解),它与人类的差距最大。但在风格倾向纯粹体现在语言之内,特别是书面语言之内时,GPT-2 的表现则与人较为相似。

再来讲讲不那么直观的结论。GPT-2 生成的样本中往往缺少某些看似非常简单且可预测的真实文本特性。举例来说,当生成类似小说的文本时,它往往无法跟踪特定场景中包含哪些角色(例如,角色 A 曾在当前场景中说话,但当角色 B 提到角色 A 时,却表现得好像后者并不在场景之内)。在非小说类文本当中,GPT-2 则倾向于通过重复一组关键短语来维持“主题”,但由于未能注意到连续性因素,其往往会对该主题做出截然不同甚至相互矛盾的断言。

我认为其中一部分问题源自 GPT-2 在初期训练过程中采取的具体方法——换言之,预测真实文本与生成伪造文本并不完全是同一回事。其训练目标只关注对训练文本做出稳定的用词分布判断,但却并不重视以稳定的良好方式判断自己预测出的用词分布结果。(请注意,其预测出的用词分布与真实文本也并不相同。)

事实上,将预测分布中的样本馈送回 GPT-2 进行进一步预测,即会产生令人印象深刻的“生成文本”——这更像是个有趣的事故,而非真正的优化目标。如果要进一步提升它的伪造能力,可能需要更明智地选择抽样方法,而完全随机的抽样仍有可能带来垃圾一般不知所云的输出内容。

即使采用 top=p 等良好的采样方法,GPT-2 的采样稳定性同样偏弱;当我们试图通过重复“自我提示”来生成比上下文窗口更长的文本时,我注意到一种现象:文本质量通常会在某一点之后立即呈现出断崖式下降。这些结果完全有违语言习惯,而且在记录中充斥着大量异常的段落。我的假设是,这就像是识别熊猫/长臂猿这类对抗性实例:样本具有 GPT-2 能够识别的高密度特征,而这些特征最终会在一系列线性子空间中朝着相同的方向推进(例如在 tramsformer 当中采用非饱和激活,即 gelu),并导致模型偏离训练歧管。

为了再次收敛,模型确实能够在某些特定的短语、句子甚至段落当中偶尔带来不错的生成结果,但其样本在仍然很难在短篇或者较长篇幅的范围内保证全局一致性,且几乎不可能将其中的表述与现实世界对应起来。(这种状况再配合较为出色的写作能力,就构成了一种奇妙的「内涵笑话」风格:它好像是在讲一些非常隐晦但又有趣的小故事……只有特别聪明的人才能完全看懂。)

我的第一反应是,这套模型应该无法被用于生成伪造信息。让它“讨论某事”或者“编造某事”其实非常困难,相比之下让它采用某些特定风格或者类型的写法倒是比较容易。

实际情况比这还要微妙。这套模型非常擅长编写看起来类似于新闻报道的故事,大概是因为它在训练过程中接触过大量素材吧;在 OpenAI 发布的大量无条件样本中,类似的新闻文本占主导比例。因此,假设我们能够找到一种有效的方法将虚假事件馈送至原始模型当中,它也许真的能够利用特定主题捏造出令人信服的假新闻。

这正是“GROVER”创造者的目标,他们整理出了这样一套包含大量自定义素材的训练语料库。简单来霁,他们训练出一款 transformer,能够通过结构化方式理解新闻标题与故事内容之间的关系。在此之后,他们对正文进行采样,并循环回来以生成足以替换初始标题的新标题。

基本上,他们的成果允许我们从 Breitbart 或者 Infowars 等网站上提取标题,并以同样的风格编写出类似于《纽约时报》报道的“真实新闻”,最后再循环回来用“真实新闻”风格重写标题。据我估计,MTurkers 随后会对结果文本进行评估,从而确保其比原始文本更有说服力。

这确实是种可怕的现象,而且模型确实有能力操纵新闻主题。在简单的文本范畴之内,这样的操纵确实很难被人们发觉。另一方面……现在是 2019 年,特朗普担任美国总统,在这样一个疯狂的时代,Breitbart 风格的假新闻跟所谓的真新闻还有什么区别吗?有些人甚至认为接种疫苗对健康有害,这样的背景下,文风能不能跟《纽约时报》对得上真的重要吗?

这种技术确实能够给恶意行为者带来帮助,但这种帮助似乎没多大必要。很多人甚至习惯于单纯根据社交媒体上的文章标题进行转发,而根本就懒得点开看一眼;相比之下,真正有严谨精神的人们则更关注内容的真实来源,他们也不可能简单被文风这种因素骗倒。

最后,我们还得承认一点, 恶意人士并不是科研工作者,他们根本就不可能下大力气研究模型训练 。GROVER 是一套由学者创建,供其他学者进行威胁建模实践的方案。因此,在 GPT-2 真正转化一键式生成工具之前,真正的伪造者恐怕根本就没兴趣加以探究。至少, 我是从来没有听说过那么有科研精神的骗子 (而且相信我,我试过很多次,就算是在最擅长的领域 GPT-2 的效果也绝没那么夸张)。

声明:本文来自用户分享和网络收集,仅供学习与参考,测试请备份。